Hacking Telco equipment
The HLR/HSS

Laurent Ghigonis
Security researcher at P1 Security
What are we talking about?

A mobile network operator Core Network
Network passive capture showing Global Titles
Mobile Operators

• Conveys the majority of voice communications worldwide
• Conveys our data
• Conveys growing M2M traffic
• Emergency systems notifications uses it

=> We now rely on it and we have some security expectations
Mobile Operators and governance

• In Europe

Technical Guideline for Minimum Security Measures
Guidance on the security measures Article 13a

2.2 Security and integrity

Paragaphs 1 and 2 of Article 13a contain two different requirements:

- Paragraph 1 requires Telcos to “take appropriate technical and organisational measures to appropriately manage the risks posed to security of networks and services”, and to take measures “to prevent and minimise the impact of security incidents on users and interconnected networks”.
- Paragraph 2 requires Telcos to “take all appropriate steps to guarantee integrity of their networks, and thus ensure the continuity of supply of services”.

In order to facilitate improvements in the protection of ECIs, common methodologies may be developed for the identification and classification of risks, threats and vulnerabilities to infrastructure assets.

The efficient identification of risks, threats and vulnerabilities in the particular sectors requires communication both between owners/operators of ECIs and the Member States, and between the Member States and the Commission. Each Member State should collect information concerning ECIs located within its territory. The Commission should receive generic information from the Member States concerning risks, threats and vulnerabilities in sectors where ECIs were identified, including where relevant information on possible improvements in the ECIs and cross-sector dependencies, which could be the basis for the development of specific proposals by the Commission on improving the protection of ECIs, where necessary.
Mobile Operators and governance

• In France

LIVRE BLANC DÉFENSE ET SÉCURITÉ NATIONALE - 2013

- Assurer la continuité des fonctions essentielles

L’État met en œuvre depuis 2006 une politique de sécurité des activités d’importance vitale, qui s’applique à douze secteurs d’activité et vise à évaluer et à hiérarchiser les risques et les menaces, puis à élaborer les mesures pour y faire face. Cette politique, qui repose sur une association étroite des opérateurs, sera rénovée afin de mieux prendre en compte l’ensemble des risques et des menaces et d’assurer la continuité des fonctions essentielles. Cette rénovation visera également une sensibilisation accrue de l’ensemble des acteurs publics et privés ainsi qu’une meilleure information des citoyens. Dans cette perspective, seront conduites des actions d’éducation, de formation et de communication vers des publics ciblés.

Lets check the reality ...
The Witness: An HLR/HSS

Typical HLR/HSS in use in operator Core Network

- Provisioning Gateway
- Provisioning DSA
- Install Server
- Admin
- Routing DSA
- 3 Back Ends
- HSS Front End
- HLR Front End
- AuC HSM
HLR/HSS in Mobile Core Network

A mobile network operator Core Network Network passive capture showing Global Titles

Hacking Telco equipment: The HLR/HSS – Laurent Ghigonis – P1 Security

2014, Hackito Ergo Sum - Security Conference
HLR/HSS in Mobile Core Network

Telecom network architecture
HLR/HSS in Mobile Core Network

Access

iCore

Services

HLR / HSS Function in the Core Network

- GSM
- CDMA
- UMTS
- LTE

- BTS
- BSC
- NodeB
- eNodeB

- UMSC / MSC / VLR
- GSN
- PDSN
- SGSN
- MME

- HLR / HSS

- AuC / AC / AAA
- SMSC/MMSC
- IN-SCF
- IMS
- PDN-GW
- PCRF

PSTN / PLMN

Internet

Application Services

© Tecore, Inc. - Tecore Networks Product Portfolio

Hacking Telco equipment: The HLR/HSS – Laurent Ghigonis – P1 Security

2014, Hackito Ergo Sum - Security Conference
HLR/HSS in Mobile Core Network

- HLR is used in all 2G Operator Network
- HSS is used in all 3G/4G Operator Network
- Stores customer data
 - Subscriber identifier (IMSI)
 - Subscriber encryption keys
 - Subscriber approximate location
 - Subscriber SIM plan options
- Critical to the operator
 - HLR down == Network down, no calls possible
HLR/HSS in Mobile Core Network

HLR/HSS receiving subscriber location update from the operator SS7/Diameter signaling links
Lets make it talk ...
Plan

HLR/HSS Robustness assessment

• Virtualization
 – Virtualization and instrumentation

• System Analysis
 – Localroot, Framework complexity

• Network Fuzzing
 – SS7 Protocols

• Binaries Reverse
 – More vulns
HLR/HSS Virtualization

No, it’s not ATCA / NFV
An HLR/HSS is an ecosystem
An HLR/HSS is an ecosystem

• HLR + HSS Front-end
• HLR Administration server
• Application/Database routing servers
• HLR Backend/Database (multiple)
• HSM (Hardware Security Module) for keys
HLR/HSS is never alone

HLR/HSS Redundancy

Site A
On-site loadbalancing
HLR/HSS Frontend (sig/app)
HLR/HSS Backend (database)

Site B
On-site loadbalancing
HLR/HSS Frontend (sig/app)
HLR/HSS Backend (database)

Site C
On-site loadbalancing
HLR/HSS Frontend (sig/app)
HLR/HSS Backend (database)

Site D
On-site loadbalancing
HLR/HSS Frontend (sig/app)
HLR/HSS Backend (database)

Dedicated L3 network for Signaling/Applications
Master-Slave

Dedicated L3 network for Database synchronisation
Where to start

• Most exposed from the outside
 => HLR/HSS Front-end
 – Receives SS7/Diameter traffic
 • Telecom network stacks
 – Receives provisioning requests
 – Connected to the HSM
Where to start

Typical HLR/HSS in use in operator Core Network
Virtualization of HLR/HSS Frontend
Original Equipment Manufacturer

- Specs of the real equipment
 - i386 / x64 / Sparc
 - Solaris / CentOS
 - 32 GB of RAM
 - CPU 16 Cores
 - TB hard drive + External SAN
Qemu/KVM

- Faster than VirtualBox
- More flexible
- Tweak code to add more network interfaces
- VDE Switch for networking
Qemu/KVM

qemu-system-x86_64
 -machine type=pc,accel=kvm:tcg -pidfile ./myhlr.pid
 -m 7.2g -smp 4 -drive file=/dev/mapper/lvm-vm--myhlr,cache=none
 -vnc 127.0.0.1:2,password,tls,lossy -display curses -rtc base=localtime,driftfix=slew
 -net vde,vlan=1,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=1,macaddr=52:54:00:00:10:01
 -net vde,vlan=2,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=2,macaddr=52:54:00:00:10:02
 -net vde,vlan=3,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=3,macaddr=52:54:00:00:10:02
 -net vde,vlan=4,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=4,macaddr=52:54:00:00:10:02
 -net vde,vlan=5,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=5,macaddr=52:54:00:00:10:02
 -net vde,vlan=6,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=6,macaddr=52:54:00:00:10:02
 -net vde,vlan=7,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=7,macaddr=52:54:00:00:10:02
 -net vde,vlan=8,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=8,macaddr=52:54:00:00:10:02
 -net vde,vlan=9,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=9,macaddr=52:54:00:00:10:02
 -net vde,vlan=10,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=10,macaddr=52:54:00:00:10:02
 -net vde,vlan=11,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=11,macaddr=52:54:00:00:10:02
 -net vde,vlan=12,sock=/home/vm-kvm/myhlr/vde-myhlr.ctl -net nic,vlan=12,macaddr=52:54:00:00:10:02

• Physical partition for disk
 – Do not use disk file on host btrfs
 • super slow
 • ext4 is ok
 – http://www.linux-kvm.org/page/Tuning_KVM
• Curses output
• Improvements: serial terminal
Qemu/KVM

- Solaris 10
 - Qemu/KVM ok for x64
 - Fails for SPARC
- Stock kernel
 - /kernel
 - /usr/kernel
- Custom kernel modules
 - For Telecom Signaling [Signalware]
- Uses grub
- Failsafe mode
Inside the machine

• ZFS filesystem
• Solaris 10
• Everything is installed via packages
• Multiple Oracle databases
 — Even on HLR/HSS Front-end only
• A lot of Middleware framework to start the actual network stacks / applications
• Telco stacks: based on Ulticom Signalware
• The OS expects its precious network cards
System Analysis
The filesystem

• ZFS = Filesystem + Volume manager
• ZFS pool (often mirrored)
 – ZFS root pool
 • 100-200GB usually enough
 • Prepare free space for system/processes dump
 – ZFS Dump pool
 • Should be more than size of your RAM
 – ZFS SWAP pool
 • Should be more that size of your RAM
The filesystem

- ZFS offers good resilience against data corruption, and is very picky when there is too much corruption
 - You can’t recover when filesystem is too much broken
 - You can try
    ```
    $ zdb -e -p /dev/dsk/c0t3d0p0 -F -X -AAA -dd rpool 1
    $ zpool import -f -F -X 19485729304958623456 mypool
    $ zpool import -o readonly=on -o autoreplace=on -o failmode=continue -m -N -f -F -X 19485729304958623456 mypool
    ```

- If it fails
 - Code your own tool by modifying ZOL
Filesystem /

- advdata/
- autoinstmnt/
- bin@
- boot/
- cust_data/
- dump@
- environment.txt*
- etc/
- export/
- false/
- global@
- home/
- installmnt/
- kernel/
- lib/
- mnt/
- net/
- nsr/
- opt/
- patchmnt/
- platform/
- root/
- rpool/
- rtp_environtxt
- sbin/
- tftpboot/
- ti_var/
- tmp/
- TspAcc@
- TspAccBackup@
- TspCore@
- tspinst/
- TspTickets@
- updateSW/
- usr/
- var/
- vol/

Grub/platform + failsafe

Home + Applications data + Telco specific apps

Applications data

Kernel

Telco specific apps

Crashdumps from Telco specific apps
Some packages installed

application SMAWrtpl
 Telecommunication Service Platform (TSP) Base Package

application OMNI
 Signalware System

application S6U-4
 Signalware System

application OMNI-C7X
 Signalware C7 Extensions

application INTPahacu
 AC Utimaco HSM
Low hanging fruits

- **SUID executables**
 - SUID Total: 162 (155 binaries, 7 scripts)
 - SUID Root: 142 (137 binaries, 5 scripts)

- **Signalware Boot process**
 - “becoming root” by Design
Local roots

- Of course, we often find multiple local roots
- Some are really too easy (one command):

```
Number of unsuccessful login since last successful login is 0
Last login: 0000-00-00 00:00:00 ; from 0.0.0.0.

$ id
uid=_____(rtp99) gid=_____(dba)
$ ____________
bash-3.2# id
uid=0(root) gid=1521(dba)
bash-3.2# 
```
Example of Telco network stack:
NSN TSP / RTP + Ulticom Signalware

• TSP + RTP framework are found on NSN NT-HLR
 – Found in many European and Worldwide operators
 – Very similar to Apertio OneHLR

• TSP: Telco Server Platform (Ericsson) / Telco Service Platform (NSN, others, generic name)

• RTP: Resilient Telco Platform (NSN)
Example of Telco network stack: NSN TSP / RTP + Ulticom Signalware

- **SS7 Protocol handling**

 - **TSP Framework [NSN]**
 - Handles TCAP and MAP services
 - [Java executables, uses C libraries]

 - **Signalware stack [Ulticom]**
 - Handles SCTP, M3UA, SCCP, TCAP
 - [kernel modules and userland binaries]

 - **RTP Framework [NSN]**
 - Starts all Telco specific applications
 - [Shell scripts and binaries]

Reminder: SS7 stack
Network Fuzzing
Fuzzing SS7: M3UA

- Example: Flooding badly handled
 - Leads to alerts flooding in OSS
 - Leads to loss of previous alerts!
 - P1VID#799

Description
IntpLogProcGroup_257: Log type OAM Security Management Log has reached the maximum fill level (100 percent) Data is lost.

Long Text
Log messages of the Advantage system are stored in a local repository until they are collected by the Log Management Application of the Advantage Commander. There is a log type specific maximum number of messages being stored in the repository.

The repository now is filled up. The oldest log messages are being deleted to store further entries. Those deleted log messages are lost.
Fuzzing SS7: SCCP

• Example result: 1 specific MSU repeated 2 times causes DoS of all Signaling Interconnections
 – HLR is down during 2 minutes
 – Total Denial of Service of the network
 – Nobody can receive calls in the whole country

```
core 'core.xxx' of 15477: /export/home/xxx
  01 msu_processing ()
  02 msg_distribution ()
  03 main ()
  04 _start ()
```

– If the attack is repeated, the DoS is permanent during the attack
– P1VID#773

So long for the critical infrastructure …
Fuzzing SS7: SCCP

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Prt Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2014-03-</td>
<td>123</td>
<td>456</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>2</td>
<td>2014-03-</td>
<td>789</td>
<td>012</td>
<td>SCCP Unknown</td>
</tr>
<tr>
<td>3</td>
<td>2014-03-</td>
<td>345</td>
<td>678</td>
<td>SCTP DATA (retransmission)</td>
</tr>
<tr>
<td>4</td>
<td>2014-03-</td>
<td>901</td>
<td>234</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>5</td>
<td>2014-03-</td>
<td>567</td>
<td>890</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>6</td>
<td>2014-03-</td>
<td>234</td>
<td>567</td>
<td>SCCP Unknown</td>
</tr>
<tr>
<td>7</td>
<td>2014-03-</td>
<td>123</td>
<td>456</td>
<td>SCTP DATA (retransmission)</td>
</tr>
<tr>
<td>8</td>
<td>2014-03-</td>
<td>789</td>
<td>012</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>9</td>
<td>2014-03-</td>
<td>345</td>
<td>678</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>10</td>
<td>2014-03-</td>
<td>901</td>
<td>234</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>11</td>
<td>2014-03-</td>
<td>567</td>
<td>890</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>12</td>
<td>2014-03-</td>
<td>234</td>
<td>567</td>
<td>SCCP Unknown</td>
</tr>
<tr>
<td>13</td>
<td>2014-03-</td>
<td>123</td>
<td>456</td>
<td>SCTP DATA (retransmission)</td>
</tr>
<tr>
<td>14</td>
<td>2014-03-</td>
<td>789</td>
<td>012</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>15</td>
<td>2014-03-</td>
<td>345</td>
<td>678</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>16</td>
<td>2014-03-</td>
<td>901</td>
<td>234</td>
<td>SCTP SACK</td>
</tr>
<tr>
<td>17</td>
<td>2014-03-</td>
<td>567</td>
<td>890</td>
<td>SCTP SACK</td>
</tr>
</tbody>
</table>

Frame
- bytes on wire (1000 bits), bytes captured (2000 bits)

Linux cooked capture
- SS7 Link Layer Protocol, Src Port: m3ua (2005), Dst Port: m3ua (2005)
- MTP 3 User Adaptation Layer

Signalling Connection Control Part
- Signalling Connection Control Part (sccp), 25 bytes
- Packets: 24967, Displayed: 1, Profile: Default
Fuzzing SS7: MAP

• Example results: 1 specific MSU causes MAP process crashes
 – 5 MSU/second makes HLR totally unresponsive to any other MAP Query
 • Total Denial of Service of the network
 • Nobody can receive calls in the whole country
 – 1 MSU/second makes HLR totally drop 50% of other MAP Queries
 • Network is highly perturbed
 • 50% of the called in the whole country are failing
 – P1VID#772
Fuzzing Diameter

• Process Crash with 1 specific manually crafted MSU

Logs do not even report process crash.
Neither the OSS Alerts.

Application logs:
Services_Esm_Log_Message: vc_Priority=LOG_ERR, vc_MessageInformation=ESM:
Service could not be processed correctly,
vc_AdditionalInformation=Reason: xxxxxxxxxx data unavailable, Message Type: S6a-xxxxxxxxx
Services_Esm_Log_Message: vc_Priority=LOG_ERR, vc_MessageInformation=ESM:
Service could not be processed correctly,
vc_AdditionalInformation=Reason: xxxxxxxxxx data unavailable, Message Type: S6a-xxxxxxxxx
UTC Tue Sep 3 01:20:44 2013 Services_Esm_Log_Message: vc_Priority=LOG_ERR,
vc_MessageInformation=ESM: Service could not be processed correctly,
vc_AdditionalInformation=Reason: xxxxxxxxxx data unavailable, Message Type: S6a-xxxxxxxxx
Services_Esm_Log_Message: vc_Priority=LOG_ERR, vc_MessageInformation=ESM:
Service could not be processed correctly,
vc_AdditionalInformation=Reason: xxxxxxxxxx data unavailable, Message Type: S6a-xxxxxxxxx
Behind that, process core dumps are created...

P1VID#718
Does redundancy saves you?

• No!

• Same N front-ends == same crashes
• Messages just needs to be sent N times
Binaries reverse
Often, too much help...

- Binaries not stripped
 - Debug symbols / function names / ... available
- No anti-debug mechanism
- Libraries headers on production machines
 - Great help in understanding the internals
- Large documentation about internals on production machines
 - Great help in understanding the internals
- Updated binaries and previous binaries both on production machines
 - Binary diff to track issues fixed
Signalware Kernel modules

- Example: Parsing of SCCP header
Signalware Kernel modules

- Kernel modules signaling parsing is robust
- IPC to communicate with userland binaries
- Complexity leads to other type of errors
 - Logic errors
 - Race conditions
 - Slow handling of some types of MSUs
Signalware userland binaries

- Parsing less robust (less tested)
- Example logic error due to IPC / Framework complexity:

```
lea    rsi,       ; "%s: received %s\n"
mov    edi,       ; int
mov    eax, 0
call   _tr_exec
mov    rax, cs:p_sccp_
mov    rax, [rax]
movzx  r13, [rax+ ...] ; CRASH !!!! *p_sccp_ = NULL
```

Null pointer dereference

Can be triggered from the International SS7 network
So verdict?
So verdict?

• Misconceptions!
 – No crashes on a Critical Core Network Element
 • FAIL
 – Robustness against network attacks
 • FAIL
 • Redundancy != Robust, attack kills Front-end one by one
 – Modern
 • Depends, but from what we see there is much room for improvement
Mobile Operators and governance

Technical Guideline for Minimum Security Measures

Guidance on the security measures Article 13a

<table>
<thead>
<tr>
<th>2.2 Security and integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragraphs 1 and 2 of Article 13a contain two different requirements:</td>
</tr>
<tr>
<td>- Paragraph 1 requires Telcos to take appropriate technical and organisational measures to appropriately manage the risks posed to security of networks and services, and to take measures to prevent and minimise the impact of security incidents on users and interconnected networks.</td>
</tr>
<tr>
<td>- Paragraph 2 requires Telcos to take all appropriate steps to guarantee integrity of their networks, and thus ensure the continuity of supply of services.</td>
</tr>
</tbody>
</table>

- **Reality on Threats analysis:** Maybe
- **Reality of Telco equipment security:** Very bad
- **Public information:** Very bad
- **Telco private sector information:** Didn’t see impact
Consequences

- Mobile Network crashes for unknown publicly available reason
- Spying on phone calls / customer activities from a single point (Core Network) is relatively easy
- Fraud
Recommendations

• Secure SDLC (Secure Software Development Life Cycle)
 – Design
 – Implementation
 – Testing
 • Especially for vendors custom stacks/services
 TCAP/MAP parsing bugs leading to overflows, ...

• Vendors security audits (HLR isolated)
 – System audit
 – Network audit

• Testbed audits (HLR in environment)
 – System audit
 – Network audit
 – Before deploying to production
Recommendations: securing the OS

• Use Solaris Zones to split services: P1VID#764
• Use Solaris Audit mechanism: P1VID#765
• Authenticate the hardware
 – To prevent emulation
• Use the latest OS protections against exploitation
 – Solaris 11 has ASLR
 – Use custom Linux kernel
• Use a firewall by default on the machine itself
• ...
Recommendations: OSS

• Make it faster!
 – People should be able to use it to react when under attack
 – E.g. NSN @vantage commander

• Need access to all low-level network traffic for forensics
Recommendations: For the operators

• Push the vendors to fix the bugs
• Some of the attacks we discovered can be filtered
 – Operators do not have to wait for bugs to be fixed
 – Filter at perimeter boundaries
 (typically STP / Router)
 – Depends on STP / Router models and security “features”
 • Sometime filtering options are charged by vendor
• It is possible to filter also at the SCCP provider level
To be continued

• Telecom Network Elements security is low
 – We tested multiple Network Element types/models, from different vendors

• Vendors, Governments and security researchers have work to do

• Vulnerability disclosure in security critical infrastructure is scarce
 – Dangerous?
 – Not if there is collaboration
Other aspects of Telecom Security

• We talked here about equipment security
 – It’s a work in progress, and only HLR/HSS
 – Mainly Network Equipment Vendor responsibility

• Also consider
 – Other Network Elements security
 – GRX / IPX / SCCP Providers security
 – Deployment security (passwords policies, filtering...), Operator responsibility
 – Telecom Network Fraud (SS7 spoofing, Call/SMS Spoofing, ...), Operator responsibility
References

Governance literature on critical infrastructure:

- **European level**
 - 2007:
 - http://www.nato-pa.int/default.asp?COM=1165&LNG=0
 - 2012
 - 2013

- **France**
 - 2012
 - 2013
 - http://www.gouvernement.fr/gouvernement/livre-blanc-2013-de-la-defense-et-de-la-securite-nationale
That’s it, please react.

Thank you

laurent@p1sec.com

http://www.p1sec.com